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under these constraints raises a number of issues of interest to the artificial
intelligence community such as:

- knowledge representation semantics for organization modeling,
- extending knowledge representation techniques to include the variety of
- constraints found in the scheduling domain,

-~ integrating constraints into the search process--in particular, determining
how to use constraints to bound the generation and focus the selection of
alternative solutions,

~ relaxing constraints when conflict occurs, and

~ analyzing the interaction between constraints to diagnose poor solutions.
In this thesis, we present a system called 1SIS. 1ISIS uses a constraint-directed
search paradigm to solve the scheduling problem. ISIS provides:

- a knowledge representation language (SRL) for modeling organizations :.:d
their constraints,

- hierarchical, constraint—directed'scheduling of orders, which includes:
constraint-directed bounding of the solution space,
context-sensitive selection of constraints, and
"weighted interpretation of constraints.
- analytic and generative constraint relaxation, and
- techniques for the diagnosis of poor schedules.
In addition, the ISIS system has been designed to provide complete facilities
for practical use in the factory. These facilities include: interfaces for
updating factory status, incremental scheduling in response to changes in the
factory, interfaces for altering the factory model, and interactive, scheduling

with flagging of poorly satisfied constraints. Versions of the ISIS program
have been tested on a model of a real factory using simulated orders.
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\4 Abstract

This thesis investigates the problem of constraint-directed reasoning in the job-shop
: scheduling domain. The job-shop scheduling problem is defined as: selecting a sequence of
) operations whose execution results in the completion of an order, and assigning times (i.e.,

' ; start and end times) and resources to each operation. The number of possible schedules
grows exponentially with the number of orders, alternative production plans, substitutable
: resources, and possible times to assign resources and perform operations. The acceptability

of a particular schedule depends not only on the availability of alternatives, but on other
knowledge such as organizational goals, physical limitations of resources. causal restrictions
amongst resources and operations, availability of resources, and preferences amongst
alternatives. By viewing the scheduling problem from a constraint-directed search
perspective, much of this knowledge can be viewed as constraints on the schedule
generation and selection process. The problem of scheduling orders in a job-shop under
these constraints raises a n%be( of issues of interest to the artificial intelligence community
such as .

/ . knowledge representation semantics for organization modeling,

| eextending knowledge representation techniques to include the variety of
. / constraints found in the scheduling domain,
e integrating constraints into the search process -- in particular, determining how to
use constraints to bound the generation and focus the selection of alternative
solutions,

-

e relaxing constraints when conflict occurs, and

# analyzing the interaction between constraints to diagnose poor solutions.

'

In this thesis, we present a system called ISIS. ISIS uses a constraint-directed search
paradlgm to solve the schedulmg problem ISIS provides:

ea knowledge representation Ianguage (SRL) for modeling organizations and their
coEStramts;D
¢

o hierarchical, constraint-directed scheduling of orders, which includes:

A TR IR eI sk - - s

o constraint-directed bounding of the solution space)' |

ojcontext sensitive selectlon of constramts, and

N
° weughted interpretation of constraints.

(e )

¥
; e analytic and generative constraint relaxation)- and

————————

e techniques for the dlagnosw of poor schedules

In addition, the ISIS system has been designed to provide complete facilities for practical use
in the factory. These facilities include: interfaces for updating factory status, incremental




scheduling in response to changes in the factory, interfaces for aitering the factory model,
and interactive, scheduling with flagging of poorly satisfied constraints. Versions of the SIS
program have been tested on a model of a real factory using simylated orders.




MARK S. FOX PAGE 1

Chapter 1
Introduction

This thesis investigates the problem cf constraint-directed reasoning in the job-shop
scheduling domain. The job-shop scheduling problem is defined as:

e selecting a set of operations whose execution resuits in the completion of an
order, and

e assigning times (i.e., start and end times) and resources to each operation.

The number of possible schedules grows exponentially with the number of orders, alternative
production plans, substitutable resources, and possible times to assign resources and
perform operations. The acceptability of a particular schedule depends not only on the
availability of alternatives, but on other knowledge such as:

e Organization Goals: due date requirements, work-in-process time
requirements, cost restrictions, and machine utilization goals,

e Physical Limitations: machine capabilities, product size and quality limitations,

e Causal Restrictions: precedence of gperations, and resource requirements to
pertorm an operation,

e Availability: availability of resources (e.g., tools, fixtures, NC programs, and
operators) to perform an operation, and

e Preferences: qualitative preferences for operations, machines, and other
resources.

By viewing the scheduling problem from a constraint-directed search perspective, much of
this knowledge can be viewed as constraints on the schedule generation and selection
process. The probiem of scheduling orders in a job-shop under these constraints raises a
number of issues of interest to the artificial intelligence community such as:

¢ knowledge representation semantics for organization modeling,

e extending knowledge representation techniques to include the variety of
constraints found in the scheduling domain,

o integrating constraints into the search process -- in particular, determining how to
use constraints to bound the generation and focus the selection of alternative
solutions,

INTRODUCTION
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o relaxing constraints when conflict occurs, and

e analyzing the interaction between constraints to diagnose poor sclutions.

In this thesis, we present a system called iSIS. ISIS uses a constraint-directed search
paradigm to solve the scheduling problem. ISIS provides:

& a knowledge representation language (SRL) for modeling organizations and their
constraints,

o hierarchical, constraint-directed scheduling of orders, which includes:

o constraint-directed bounding of the solution space,
o context-sensitive selection of constraints, and
o weighted interpretation of constraints.

¢ analytic and generative constraint relaxation, and

e techniques for the diagnosis of pocr schedules.

In addition, the ISIS system has been designed to provide complete facitities for the practical
use in the factory. These facilities include: interfaces for updating factory status, incremental
scheduling in response to changes in the factory, interfaces for aitering the factory model,
and interactive scheduling with flagging of poorly satisfied constraints.

Versions of the ISIS program have been tested on 8 madel of a real factory, using simulated
orders. Experiments were conducted comparing: beam and hierarchical search, forward and
backwards search, optimistic and pessimistic constraints, and eager and wait-and-see
resource reservation selection.

The objective of this dissertation, from a job-shop scheduling perspective, is to focus on the
representation and utilization of all relevant constraints in the scheduling process, to design
and construct an interactive system for the modeling and scheduling of general job-shops,
and tc bridge the gap between scheduling systems which simply guide the human scheduler,
to a scheduling system that can control operations in realtime.

The rast of this chapter provides a detailed description of the scheduling problem, followed
by a brief discussion of the issues and a summary of the ISIS system.

1.1. The Scheduling Problem

The goal of this section is to illustrate the variety of different constraints found in the
scheduling problem. Many of which have not been covered by previous techniques. This
inability to model all the constraints of the problem has often led to sysiems of limited ability,
feaving much of the work to the human scheduler. In this section we will illustrate the nature
of the scheduling problem and the constraints which affect it. A categorization of constraints
is provided,

INTRODUCTION




g mm

MARK S. FOX PAGE 3

The job-shop scheduling problem involves selecting a sequence of operations (i.e., a
process routing) whose execution results in the completion of an order, and assigning times
(i.e.. start and end times) and resources to each operation. Historically, the scheduling
problem is divided into two separate steps. Process routing selection is typically the product
of a planning process, and the assignment of times and resources is typicallv the product of
scheduling. Actually, the distinction between planning and scheduling is fuzzy. The choice of
routing cannot be made without generating the accompanying schedule. The admissibility of
a process routing, is determined by the feasibility of each selected and scheduied operation.
An operation is feasible when its resource requirements are satisfied during the scheduled
time of the operation. Resource requirements for an operation are determined by the
operation and, in turn, by the machines that may perform the operation.

This proolem has been described as NP-hard. The sequencing of 10 orders through §
operations has (10!)5 or more than 10%° possible schedules (without gaps or alternative
routings). Adding more orders, operations, and resources to the selection process muitiplies
the complexity of the scheduling problem. The complexity of the job-shop scheduling
problem can be illustrated by examining the problems of a real plant.

A Westinghouse Electric Corporation Turbine Component Plant (WTCP) was selected as a
test case. The primary product of the plant is steam turbine blades. A turbine blade is a
complex three dimensional object produced by a sequence of forging, miiling and grinding
operations to tolerances of a thousandth of an inch.- Thousands of different blades are
produced in the plant; much of them as replacements in turbines currently in service.

The plant continuously receives orders for one to a thousand blades at a time. Orders fall
into at least six categories:

1. Forced outages (FO): Orders to replace blades which malfunctioned during
operation. Itis important to ship these orders as soon as possible.

2. Critical replacement (CR) and Ship Direct (SD): Orders to replace blades during
scheduled maintenance. Advance warning is provided, but the blades must
arrive on time.

3. Service and shop orders (SO, SH): Orders for new turbines. Lead times of up to
three years may be known.

4. Stock orders (ST): Order for biades to be placed in stock for future needs.
The part of the plant considered by ISIS has 100 {0 200 orders in process at any time.
Parts are produced according to a process routing or fineup. A routing specifies a
sequence of operations on the part. An operation is an activity which defines:

o the resources required such as tools, materials, fixtures, and machines,
e machine setup and run times, and
e labor requirements.

INTRODUCTION
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in the plant, each part number has one or more process routings containing ten or more
operations. Process routings may be as simple as substituting a different machine, or as
complex as changing the manufacturing process. Further more, the resources needed for an
operation may also be needed by other operations in the shop.

During our discussions, we found that orders are not scheduled in a uniform manner. Each
scheduling choice entails side effects whose importance varies by order. One factor that
continuously appears is the reliance of the scheduier on information other than due dates,
process routings, and machine availability. The types and sources of this information were
found by examining the dacuments issued by the scheduler. A schedule is distributed to
persons in each depariment in the plant. Each person on the distribution list can provide
information which may aiter the existing schedule. In support of this observation, we found
that the scheduler is spending 10% to 20% of his time scheduling, and 80%-90% of his time
communicating with other employees to determine what additional "constraints” may affect
an order’'s schedule. These constraints include operation precedence, operation alternatives,
operation preferences, machine alternatives and preferences, tool avaifability, fixture
availability, NC program availability, order sequencing, setup time reduction, machine
breakdowns, machine capabilities, work-in-process time, due dates, start dates, shop stability,
cost, quality, and personnel capabilities/availability.

From this analysis, we may conclude that the object of scheduling is not only meeting due
dates, but satisfying the many constraints found in various parts of the p!ant. Scheduling is
not a distinct function, separate from the rest of the plant, but is highly connected to and
dependent upon decisions being made elsewhere in the plant. The added complexity
imposed by these constraints leads schedulers to produce inefficient schedules. Indicators
such as high work-in-process, tardiness, and low machine utilization support this conclusion’.
Hence, any solution to the job-shop scheduling problem must identify the set of scheduling
constraints, and their alfect on the scheduling process. In the following, we examine the

variety of constraints uncovered in the WTCP plant.

1.1.1. Constraint Categories

The first category of constraint encountered in the factory is called an Organizational Goal.
Part of the organization planning process is the gesneration of measures of how the
organization is to perform. These measures act as constrainis on one or more organization
variables. An organization goal constraint can be viewed as an expected value of some
organization variable. For example:

Due Dates: A major concern of a factory is the meeting of due dates. The lateness of an
order affects customer satisfaction.

1It is untair to measure a scheduler's prefarmance based on the above measures alone. Our analysis has shown
that scheduling ia a complex constraint satisfaction problem, where the above indicators iifustrate onfy a subset of
constraints that the scheduler must consider. Schedulers are expert in acquiring ang "juggling” the satisfaction of
constraints.
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Work-In-Process: Work-in-process (WIP) inventory levels are another concern. WIP
: inventory represents a substantial investment in raw matenals and added
value. These costs are not recoverabie untii delivery. Hence, reducing
WIP time is desirable.

Resource Levels: Another concern is maintaining adequate levels of resources necessary
to sustain operations. Resources include personnel. raw materials, tools,
etc. But each resource may have constraints, for example, labor size must
be smoothed over a month's interval, or raw materials inventory may have
to be limited to a two day supply..

Costs: Cost reduction can be another important goal. Costs may include material costs,
wages, and lost opportunity. Reducing costs may help achieve other
goals such as stabilization of the work force.

Production Levels: Advance planning also sets production goals for each cost center in the
plant. It serves two functions: it designates the primary facilities of the
plant by specifying higher production goals, and also specifies a
preliminary budget by predicting how much the plant will produce.

Shop Stability: Shop stability is a function of the number of revisions to a schedule and the
amount of preparation disturbed by these revisions. [t is an artifact of the
time taken to communicate change in the plant and the preparation time.

On2 can view all organizational goal constraints as being approximations of a simple profit
constraint. The goal of an organization is to maximize profits. Scheduling decisions are then
made on the basis of current and future costs incurred. For example, not meeting a due date
may result in the loss of a customer and, inturn, further profits. The longer the work in
process time, the greater the carrying charge for raw materials and value added operations.
Maintaining a designated production level may spread the ccst of the capital equipment in a
uniform manner. In practice, most of these costs cannot be accuratety determined, but must
be approximated.

A second category of constraint is physical. Physical constraints may specify
characteristics which limit functionality. For example, a milling machine may be limited in the
size of turbine blade it can work on due to the length of its workbed. A driil may have a graph
which defines how long the drill can run at a particular speed in a particuiar material.

A third category of constraint is causal. It defines what conditions must be satisfied before
initiating an operation. Examples of causal constraints include:

. Precedence: A process routing is a sequence of operations. -A precedence constraint on an
operation states that another operation must take place before (or after) it.
There may be further modifiers on the constraint in terms of minimum or
f maximum time between operations, product temperature to be
1 maintained, etc.

'f Resource Requirements: Another causal constraint is the specification of resources to be
i
3
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present before or during the execution of a process. For example, a
milling operation requires the presence of certain tools, an operator,
fixtures, etc.

A fourth category of constraint is preference. A preference constraint can also be viewed as
an abstraction of other types of constraints. Consider a preference for a machine. |t
expresses a floor supervisor's desire that one machine be used instead of another. The
reason for the preference may be due to cost or quality, but sufficient information does not
exist to derive actual costs. In addition, machine preferences, operation preferences, and
queue position preferences are examples of this type of constraint.

A fifth category of constraint is concerned with the availability of a resource. During the
production of a schedule, as each resource is assigned to an operation, it has attached to it a
constraint that defines it unavailability for other uses during that time period.

The following lists the variety of constraints and their categories, found in the scheduling
domain:
Constraint Org. Goal Physical Causal Pref. Avail.
Operation alternatives X
Operation Preferences X
Machine alternatives x
Machine Preferences X
Machine physical constraints X
Set-up times X X
Cueve ordering preferences x
Queue stability X
Due date X
Work-in-process X
Tool requirement X
Material requirement
Personnel requirement X
Resource reservations x
Shifts
Down time X
Productivity achieved
Cost
Productivity goals
Quality '
inter-operation transfer times x

x

x
x

x X X X

A review of commercial scheduling systems found that most provide simple capacity
analysis with an emphasis on meeting due dates. This was found to be unacceptable for
WTCP. These systems are also batch oriented, meant to be run weekly or monthly, and do
not provide reaitime control. Nor do they provide full constraint representation and utilization
facilities. On the other hand, Management Science research focuses on optimal results for
artificial problems, or dispatch rules for meeting due dates or makespan (i.e., facility
utilization) which also have been found to be unsatisfactory for the real life job-shop
scheduling problem.
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WTCP uses a commercial scheduling system. Having recognized its limitations and those of
manual scheduling, they continue to pursue the identification and acquisition of software to
support the scheduling process.

1.2. Constraint-Directed Search: Issues and Objectives

Job-shop scheduling provides a rich environment for investigating the theory of constraint-
directed search. The scheduling problem can be characterized as having a large search
space which may be reduced through the examination and utilization of the relevant
constraints. It is the purpose of this section to present the constraint-directed search issues,
and the objectives of ISIS as related to them.

At present, there do not exist general models for the representation of constraints. Hence,
the first objective of this research is to identify and represent the variety of constraints, and
knowledge about them. As an example of constraint knowledge, consider a due date. One
method of representing a due date would be by date alone. The implication being that the job
would be shipped on that date. In reality, not all due dates can be met. Information in
addition to the due date is required if a scheduling system is to construct a satisfactory
schedule. For example:

e what aiternative dates are satisfactory if the original cannot be met,
o what the preferences exist for these alternative dates,
o who specified the due date, when, and why,

' isotshtg satisfaction of the due date more important than other constraints such as
c s

¢ does the satisfaction of the due date constraint positively or negatively affect the
satisfaction of other constraints, ’

e under what circumstances should the due date constraint be considered, and
] gethere %re two or more due date constraints specified for an order, which should

The constraint representation problem is concerned with the representation of this
knowledge for effective utilization during search.

One of the first issues to be faced in the representation of constraints is conflict. Consider
cost and due-date constraints, the former may require reduction of costs while the latter may
require shipping the order in a short period of time. To accomplish the latter may require
using faster, more expensive machines, hence conflicting with the former. If the conflict
cannot be solved, one or both constraints must "give ground” or be relaxed. This is implicitly
accomplished in mathematical programming and decision theory by means of utility functions
and the specifications of reiaxation through bounds on a variable's value. In Al, bounds on a
variable are usually specified by predicates (Stefik, 1981a; Engleman et al., 1980) or choice
sels (Steete, 1980; Waltz, 1975). In ISIS, our objective is to extend the general representation
of knowledge to include the specification of constraints and their refaxations.
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A second issue is constraint importance. Not all constraints are of equal importance. A due
date constraint for a high priority order may be more important than an operation preference
constraint. Any constraint-directed search system, before it attempts to choose a constraint
to relax, must determine which is the least important. The importance of constraints may also
differ from order to order. In one order, the due date may be important, and in another, cost
may be important. A reasoning system should be able to perform these two types of
differentiation. Our objective in ISIS is to extend the representation of constraints to include
the specification of relative importance.

A third issue is the understanding of how constraints interact. Conflicting constraints may
negatively affect each other. For example, removing a machine's second shift may decrease
costs but cause an order to miss its due date. Knowledge of these interactions before
scheduling may help in ruling out poor choices. How to use the knowledge of interactions
between constraints effectively is not well understood. Our objective in ISIS is to include in
the representation of constraints, the existence of interactions with other constraints, and
their effect when choosing among alternative relaxations.

A fourth issue is constraint obligation. Our experience with factories has uncovered
pruolems in the practical application of constraints. Organizations change, and constraints
change with it. Hence, for how long, and during which activities is a reasoning system obliged
to foilow a constraint? A second aspect of obligation is resolving inconsistencies within a
constraint type. ISIS may te used by a number of departments in the factory; the same
constraint type with different values may be created and applied to the same object. For
example, both the material and marketing departments may place different and conflicting
due date constraints on the same order. The system must determine which one it is obliged to
follow. Another objective is to represent the knowledge necessary to determine the obligation
of ISIS in satisfying constraints.

A fifth issue is constraint generation. Constraints have many sources. Many may be defined
by the user during the creation of the plant model. Others may be defined dynamically as the
production proceeds. For example, the constraint on the mass of metal removed during an
operation is dependent on the mass of the metal going into the operation. Hence, the
constraint is determined at the time the operation is performed. The issue of constraint
generation is defining the ability to create and use constraints. An objective of ISIS is to
enable the specification of constraint generators in the representation.

Aside from the issues of representation, there are other issues of importance. For example,
how should ISIS react to poor results from the search process. All heuristic-based problem-
solving methodologics suffer from the periodic generation of poor solutions. Our objective is
to recognize poor solutions and to suggest ways of finding better solutions. In particular, how
to use constraints to: remove poor partial solutions during the search process, diagnose poor
final solutions, and suggest relaxations to refated constraints which may result in better
solutions.

Another important issue is efficiency. As described earlier, job-shop scheduling is
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combinatorially explosive; optimal solutions are generally not attainable. Yet, in the ‘actory, a
scheduling system must provide near realtime response: It cannot take hours to develop a
schedule. Hence, any solution to the above issues must alsg be computationally efficient.
Our objective is to design a system which will provide “good" results with a reasonable
amount of processing time.

1.3. Thesis Summary

The remainder of the thesis is composed of a review of the literature followed by chapters
on;

o Scheduling and constraint-directed reasoning review.
e Piant modeling,

e Constraint representation,

e Constraint-directed scheduling methods,

¢ Analysis, and

o Observations and conclusions.

The following summarizes these chapters:

1.3.1. Modeling

The ISIS modeling system is the repository of all the knowledge necessary to plan and
schedule production. It should be able to model the concepts of activities, factory state,
orders, etc. in a manner which is machine interpretable. The system is built using SRL (Fox,
1973; Wright & Fox, 1983), a knowledge representation system, which allows the user to mold
the ianguage to his neads. SRL is a frame-based language which encodes concepts as
schemata. A schema is a coliection of siots and values. Each schema, slot, and/or value may
have meta-information attached to it. In addition to attribute knowledge, slots define inter-
schema relations, through which slots and values may be inherited. The inheritance
semantics of a relation is user definable. SRL has been used to support a number of different
Intelligent Management System functions (Fox, 1981) including simulation (Reddy & Fox,
1983) , diagnosis (Fox Lowenfeld & Kleinosky, 1983), graphics, project management, and long
range planning (Kosy & Dhar, 1983).

The SIS modeling system is a muiti-layer system for modeling manufacturing organizations
in SRL. Its layers are: structural, basic semantics, world semantics. and domain semantics.
The basic concepts are that of states, objects, and acts. Acts transform states and objects.
Time and causality are primitive concepts in the language. Time relations provide time
ordering amongst states and acts. Causal relations define how states enable acts, and acts
cause states. A manufacturing operation is defined as an act, and time and causality relations
link it to other states and acts. Prototypes, instances, and manifestations are used to
distinguish classes, elements and states of objects and acts respectively. SRL's relation
definition mechanism permits the construction of new relations which are abstractions of

INTRODUCTION




PAGE 10

these conceptual primitives. Hence, the relation nexi-operation is defined in terms of time
and causal relations. Operations may also be defined in multiple levels of abstraction.
Resources are defined as objects. Attributes and physical structure may be defined for an
object. Allocation of resources is defined as a state of possession by some operation or
resource with a specified time relation (e.g., duration). Orders are also represented with these
primitives. An order is simply a goal state (e.g., shipped) to be achieved by scheduling the
appropriate cperations.

The modeling language has an active interpretation. Its semantics supports the simulation
of parallel, discrete events (acts).

1.3.2. Constraints

The ISIS modeling system provides primitives for describing the common actions and states
in the scheduling domain. Experience has shown that a major part of our knowledge about a
plant is an understanding of constraints on the plant's operation, and alternatives to perform
when the constraints cannot be met. The modeling system is extended by providing the
capability to attach constraints to a schema, its slots, and values. Hence, any concept
representable in SRL, can also have constraints attached to it.

In scheduling, constraints may not always be satisfiable. Hence the representation of
alternatives is important. The modeiing system adds to the representation of constraints the
specification of relaxations. Relaxations may be defined cither as predicates, or choice sets
which can pe discrete or continuous. Associated with a relaxation is a preierence measure
which determines the preferred relaxations among those available. The representation of
constraints and their preferred relaxations is also a solution to the pattern specification and
matching problem.

The representation of constraints must not only cover what the constraint is, but when and
how to use it. The first problem in using constraints focuses on their relative importance.
Depending on the order, some constraints are more important than others. (SIS can
represent relative importance by either an absolute measure of importance, or by the
partioning of constraints into importance classes. Selecting which constraint to relax also
depends on how the relaxation will affect other constrainis. For example, reducing the
number of shifts in the plant may be preferred, but it may negatively affect the due date
constraint of many orders. Interact.ons of this nature are represented as relations in I1SIS. It
may also be the case, that the set of known constraints, may not be applicable to the
particular decision. The system’s obligation to satisfying a constraint depends on a number
of factors: the time over which the constraint is applicable, the consistency of the constraint
with others, the source of the constraint, and the context. 1SIS provides a representation for
all of this information. Lastly, constraints may be generated dynamically by attaching
constraint generators to relations in the model.
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1.3.3. Scheduling

The goal of ISIS is to construct schedules which satisfy as many constraints as possible in
near realtime. To achieve this, ISIS uses constraints to bound, guide and analyze the
scheduling/search process. The ISIS system performs a hierarchical. constraint-directed
search in the space of alternative schedules. Level 1 selects an order to be scheduled
according to a prioritization algorithm based on the category of the order, and its due date.
Level 2 performs a current capacity analysis of the plant. it determines the earliest start time
and latest finish time for each operation of the selected order, as bounded by the order’s start
and due date. The times generated at this level are coditied as constraints which are passed
to level 3. These operation time bound constraints constrain the start and end times of
operations at the next level. Level 3 performs a detailed scheduling of all resources
necessary to produce the selected order. Pre-search analysis begins by examining the
constraints associated with the order to determine the scheduling direction (forward vs
backward), whether any additional constraints should be created (e.g., due dates, work-in-
process), and the search operators which will generate the search space. A beam search is
then performed using the selected search operators. The beam search sequences the
application of operators. Each application of an operator generates another "ply” in the
search space. At each ply only the "n" highest raled states are selected for extension to the
next ply. The most often selected operators generate alternative operations, machines, and
queue positions for an order in the plant. Starting with a null schedule, alternative partial
schedules are generated either forward from the start date or backward from the due date.
An operation operator generates alternative states which represent alternative operations in
either the forward or backward direction. Once the operation is known for a state, other
operators extend the search by creating new states which bind the machine and/or the
execution time of the operation. A variety of alternatives exist for each type of operator. For
example, two operators have been tested for choosing the execution time of an operation.
The "eager reserver” operator chooses the earliest possible reservation for the operation's
required resources, and the "wait and see" operator tentatively reserves as much time as
available, leaving the final decision to level 4. This enables the adjustment of reservations in
order to reduce work in process time. Alternative resources are generated (e.g., tools,
materials, etc.) by other operators. Each state in the search space is rated by the set of
constraints found (resolved) to be relevant to the state and its ancestors. Constraints defined
to be in the set are thase which are attached to any resource (e.g., machine, tool, order, etc.)
specified by the state. Each constraint assigns a utility between 0 and 2 to a state; zero
signifies that the state is not admissible, 1 signifies indifference, 2 maximal support. The
rating of a state with multiple constraints is the weighted (by importance) average of the
constituent constraints. The importance of a constraint is defined statically or derived
dynamically according to goal information. Once a set oi candidate schedules have been
generated, a rule-based post search analysis examines the candidates to determine if one is
acceptable. Currently, any schedule with a rating greater than one is accepted. If no
acceptable orders are found, then diagnosis is performed. First, the schedules are examined
to determine a type of scheduling error. The error is then fed back to pre-analysis in order to
select new operators which are used to re-schedule the same order. The diagnosis of poor
solutions caused by constraint satisfaction decisions made at another level can be performed
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by analyzing the interaction relations linking constraints. A poor constraint décision ata
higher level can be determinen! by the utilities of constraints affected by it at a lower level, and
an alternative value chosen. Leve! 3 autputs reservation time bounds for each resource
required for the operations in the chosen schedule. Level 4 selects the actual reservations for
the resources required by the selected operations which minimize the work-in-process time.

The scheduting of ISIS is also reactive. The invalidation of reservations by actions such as
machine breakdowns or other orders taking too long on a machine, results in a minimal
re-scheduling of only the affectad crders, while attempting to maintain previous reservations.
I1SIS’s scheduling is also suggestive. If constraints cannot be met, it attempts to generate a
schedute which satisfies as many constraints as possible. For example, if the due date of an
order cannot be met by backwards scheduling, it attempts to schedule in the forward
direction and suggests an alternative due date.

1.3.4. Analysis

Two series of experiments are performed, all based on a portion of the turbine plant defined
by the plant scheduler. Each experiment in a series, tests a different combination of
constraints, scheduling direction, search operators, and levels of reasoning. One experiment
removes the capacity analysis and reservation selection levels. The resulting schedule
displayed high tardiness (65 of 85), and high work in process times with a makespan of 857
days. This is due to horizon effect caused by the coupling of beam search and insufficient
machine capacity. The experiment which included the capacity analysis and wait-and-see
reservation selection levels displayed fewer tardy lots (17 of 85), and very low work in process
time with a makespan of 588.8 days. At this point, machina capacity is the principal limitation
affecting tardiness. Experiments with all lots being scheduled backwards from the due date
and added capacity were also performed.

1.3.5. Conclusions

The contributions of this thesis are in three areas: representation, constraint-directed
search and job-shop scheduling. In the representation area, a more compiete semantics for
the modeling of organizations is provided which includes: states, acts, time, causality, multi-
level representaticn, and support for discrete simulation. In the area of search, ISIS
introduces a number of new concepts:

e A general representation for constraints with particular attention paid to the
representation of relaxations, interactions, and obligations.

o Constraint-tased pre- and post-search analysis to bound the solution space
before performing search, and diagnose poor constraint decisions at other levels.

¢ The generation and ecvaluation of constraint relaxations during the search
process.
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e The resolution and differentiation among constraints in evaluating states in the
search space.

e Hierarchically constrained search. A level in the hierarchy communicates only
constraints in order to guide search at the next level.

The contribution to job-shop scheduling made by this thesis is that it provides, for the first
time, a system which can represent and consider all the domain constraints during the
construction of a schedule. And do so in a reasonable amount of processing time. It also
provides incremental scheduling in reaction to changes in the plant's status, and suggests
alternative schedules when constraints cannot be satistied. _
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Chapter 2
Review

2.1. Introduction

Scheduling has been a major research topic in management science for many years. In
contrast, it has received little attention in artificial intelligence. But this is not to say that Al
has little to bring to the table. As management science has recognized, it is not practical to
separate planning from scheduling. The inability to construct an acceptable schedule may
require the construction of alternative plans. So a scheduling system must aiso consider the
planning problem. Secondly, much Ai research is concerned with general reasoning
processes. Hence many of the results are transferable among domains.

In the following, both Management Science (MS) and Al research are briefly reviewed. The
review of the MS literature focuses on some of the relevant research in the area of scheduling
and sequencing. The review of the Al literature focuses on géneral reasoning (problem-
solving) research, and on constraint research.

2.2. Management Science

Management science research in scheduling has focussed on understanding the variety of
scheduling environments that exist, and constructing scheduling algorithms specific to them.
Four types of "shops" are distinguished in the literature:

e single machine - single operation

¢ parallel machines - single operation

o flow shop series of machines - multiple operations
¢ job shop network of machines - multiple operations

A job is defined as having:

e one or more operations
¢ a processing time for each operation
¢ a due date

And the utility of a scheduled is measured in terms of:

¢ lateness
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o tardiness
o flowtime
e makespan

It was recognized early in management science that scheduling is an example of a constraint
satisfaction problem which could be optimally solved using mathematical programming
techniques. Integer programming approaches, while thearetically valid are useless
practically. Such approaches are members of the class of problems described as NP (Cook,
1 1971). This problem of algorithmic complexity has forced a biturcation cf the field.

One branch of research focuses on the attainment of optimal results, but algorithmic
complexity has restricted these results to the one and two machine cases (Lenstra & Rinnooy
Kan, 1980). And the achievement of these results requires the removal of much of the
constraints, and the focus on a single criterion for measuring schedule efficacy.

The second branch takes a heuristic approach cailed priority dispatch rules. A dispatch
rule is a local decision rule which determines the next job to be processed on a machine from
the set queued at the machine. Extensive simulation analyses have shown that the apparent
urgency rule (Rachamadugu, 1982), and the weighted shortest processing time rule (WSPT)
provide reasonable schedules with respect to a single criterion such as tardiness, while also
ignoring many of the constraints found in a typical factory (Conway, 1965).

The dispatch rule approach suffers in that it does not provide predictive information about
future operations and their machine reservations; it does rot consider alternative paths; it
does not incorporate other constraints. By contrast, the integer programming approach is
combinatorially explosive and can handle linear constraints on integer variables.

One approach to the solving the complexity problem is to take a hisrarchical approach to
scheduling (Hax & Golovin, 1978). Each level may incorporate a mathematical programming
approach, but considers only a subset of the total information. The resuits of one level,
restrict the processing of the next. By using levels of abstraction, the number of variables and
constraints is minimized, at the cost of ignoring possibly important information. Secondly, the
flow of information is from the top down. information at the lower levels cannot be fed back
into the higher levels to affect their processing.

All of the above systems can be described as "guidance" systems. They construct
schedules with are meant to guide the actual scheduling decision making performed on the
shop floor. They are limited to quiding because they lack the information necessary to make
detailed decisions. To circumvent this probiem, there has been intense investigation of
interactive scheduling systems (Godin. 1978). The interactive job-shop schedulers suffered
from the same problems listed above since they incorporated those algorithms (Ferguson &
Jones, 1969; Godin, 1968). But they did allow users to interactively modify schedules. More
recent work in interactive flowshop scheduling uses resource-usage leveling to measure
scheduling effectiveness, and a swapping heuristic to construct schedules (McDonald &
Hodgson, 1980).
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2.3. Artificial Intelligence

Two areas of research in artificial intelligence potentially impact the scheduling problem.
The first is planning research, the second is constraint analysis. As depicted earlier,
scheduling is a two part process: the first part is generating a sequence of tasks or actions to
be accomplished, the second is the assignment of resources over time to accomplish tasks.
Obviously, the latter impacts the choice of the former.

Before reviewing the planning literature, and at the risk of being pedantic, it is useful to
consider a simple model for planning, and see how research over the last two decades has
extended it. The most basic Al method is heuristic search. A search is made within a space of
possible solution states for a state that satisfies some goal description. A state can be
transtormed into another state by applying a heuristic (operator) to it. Planning can be viewed
as a form of heuristic search. The first problem in creating a planning system is to generate
the states relevant to reaching the goal. Given a description of the initial state, goal state, and
a set of operators, the operators can be iteratively applied to the initial state, and its
successors, until a goal state is found. The path from the initial state to the goa! state is a
solution path of operations, or plan. Depending on the "strength” of the operators, the space
elaborated can be large or small; however the better heuristics generate smaller search
spaces and find the solution faster. Planning, and related research, has focussed on a
number of issues: for instance, choosing what state to elaborate next, choosing which
operator to expand a state, and choosing alternative state representations and operators
(Amarel, 1967).

Planning research in Al can be traced back to the LT and GPS systems. LT (Newell &
Simon, 1956) introduced the concept of heuristic search and its preblem-solving states, goal
states, and the operators that transform states into other states. it worked backward from the
goal, splitting the problem into subproblems which it proved separately. GPS (Newell &
Simon, 1963) generalized the approach into what they termed Means End Analysis. By use of
a difference table, they were able to reduce the search space by focussing on only the most
relevant operations in achieving the goal state.

Another research area, not normally classified as planning, is that of game playing. Many of
the game playing programs in chess and checkers (Samuel, 1963) use heuristic search. The
selection of moves to make during a game is equivalent to constructing a plan. An important
contribution such systems have made to planning and scheduling is the rating of plans.2 Due
to the large size of the search space, game playing systems are required to prune the
examined states. To achieve this, an evaluation function is used to rate states, in effect
answering: of all the legal moves that can be made, what are the preferred moves? A variety
of search algorithms such as min-max, A* (Nilsson, 1971), and B* (8erliner, 1979), have been
used.

: 2" is not clear that many of the planning systems constructed to date have benefited form this research. This is
- due mainly to the "toyness” of the problems attacked.
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Early robot planning research resuited in the formalization of operators in the predicate
calculus. The STRIPS system (Fikes & Nilsson, 1971) represented operators as rules with
pre-conditions and post conditions. GPS-like means-end analysis was used to plan tasks.

Early on in planning research, Simon (1962) recognized that a planning system in a real
domain will have to struggle with the size of the search space. He proposed that planning be
done at differing levels of abstraction. By designating planning hierarchies. planning can
proceed at the highest, least detailed level and use the plan to constrain planning at the next,
more detailed level, and 50 on. One could view the ordering of differences and operators in
GPS's difference table as an implicit hierarchy. The first explicit manifestation of this concept
was ABSTRIPS (Sacerdoti, 1974). By separating pre-condition variables into levels of
importance, the pre-conditions would contain only the variabies important at the specified for
the current level of planning. While achieving good pertormance, a problem with this method
was the a priori designation oi variable levels.

Another issue of concern in planning was that of goal protection. The result of one
operation may be undone by another operation, before the result could be utilized in the
overall achievement of the goal. To deal with this, the HACKER system (Sussman, 1975) used
a debugging approach to fix a plan after it was constructed. A set of critics were dynamically
constructed to recognize errors and suggest corrections. Though an interesting approach, it
lacked extensibility. On the other hand, the NOAH system (Sacerdoti, 1975), took a
least-commitment approach to planning. NOAH wouid not sequence operations unless
forced to. This approach reduced the amount of backtracking necessary to secure a legal
plan because the current plan did not make any unnecessary sequencing decisions.

Reasoning at muitiple levels of representation can also be found in Hearsay-ll. Though the
Hearsay-Ii speech understanding system (Erman et al., 1980) cannot be viewed as a planning
system, its architecture has had a major effect on more current planning systems. Some of
the ideas that Hearsay-1l incorporated, are:

e muitiple leveis of representation,
e data and goal directed (bidirectional) problem-solving and,
¢ island-driving.

Hayes-Roth & Hayes-Roth (1980) call the combination of bidirectional problem-solving and
the ability to start problem-solving at any point in the search space (island-driving as opposed
to left to right), opportunistic reasoning. Opportunistic reasoning reduces the search space
by tocussing the planning ettort in areas that are of high certainty and/or highly constrained.
By extrapolating these "islands", further constraints on the more uncertain parts of the
planning space v:ill most-likely be generated.

Hearsay-1l did incorporate a planning mechanism. its policy modules (Hayes-Roth & Lesser,
1976) combined to form a focus of attention system that determined the sequence of
knowledge source executions. When parts of the utterance remained uninterpreted, it
dynamically determined what parts of the search space required more attention and turned
the systems resources towards reducing the uncertainty in those areas. By understanding
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what problem-solving methods it had available (i.e., knowledge sources) and its resource
constraints, it would decide the best next action. The ability to reason about "how to reason”
(or plan) has been called meta-planning in MOLGEN (Stefik, 1981b) and also appeared as
meta-rules in TEIRESIAS (Davis, 1976, Davis & Buchanan, 1977) As in conventional
hierarchical planning the ultimate result of these techniques is to reduce the space of states
that is searched by the system.

While much of the planning research mentioned above was concerned with how to reduce
the search space, there are other aspects of the planning problem that we have yet to
consider in this review. Game playing systems introduced search techniques for adversary-
oriented games. That is, the search would consider both the programs’ moves and the
opponents moves in determining a next move. The concept of adversary-oriented planning
has reappeared as counter-pianning in the POLITICS system (Carbonell, 1979). This research
can be viewed as a form of goal-protection where the system has to consider what the
adversary may do to prevent the system from achieving its goals.

Another type of planning is concerned with the satisfaction of multiple, possibly competing
goals. All of the above pfanning research is concerned with achieving a single goal. One of
the few pieces of research in the multiple goal satisfaction area is the system NUDGE
(Goldstein & Robert, 1977). A heuristic approach was developed for the domain of
appointment calendar maintenance. What was unique about this research was that it
included rules for the relaxation of constraints. When a schedule could not be found that
satisfied the existing constraints, it used the rules to prcpose alternatives (possibilities) by
relaxing certain constraints such as preferences. In this case, the preference constraint was
simply removed. Other rules peculiar to the appointment domain were used to alter existing
calendar requirements until a viable schedule was produced.

At this point in the review, we turn away from planning and look at the field of constraint
aralysis. Much of the constraint analysis research is recent, hence there is not a great deal of
literature to review. But one can view planning as constraint analysis in the sense that
operators incorporate canstraints in their pre-conditions.

One of the earlier works in constraint analysis was REF-ARF (Fikes, 1970). lts task was
similar to the linear programming task. Given a set of iinear equations that restrict the
possible values of a set of variables, can value assignments be found for them? Rather than
doing a brute force search for a set of bindings that satisfied all the constraints {(equations), it
used the constraints to reduce the generated binding set. Hence, the system can be viewed
as a classical generate and test, where the system was able to take the constraints and use
them in the generator to reduce the size of the search space.

Another type of canstraint which has existed for many decades can be called a binary
compatibility constraint. Consider a grammar. It defines the legal sentences that can be
formed from a symbol set. The grammar can be viewed as a constraint on the symbols that
will be recognized and/or generated. It defines what symbols are compatible with other
symbols when linearly ordered. Another example is the conceptual hierarchy of the SEMANT
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knowledge source of Hearsay-li (Fox & Mostow, 1977). It is similar to a grammar, but relaxes
the sequence constraint at the phrase level, allowing ungrammatical sentences, and sentence
fragments to be understood. A third instance is the 3D space description network used in
ARGOS (Rubin, 1978). In this case, a network was used to define adjacencies of objects in a
visual scene. This was then used to constrain the set of acceptable labelings of an image.

In many real-world applications, constraints are not binary, but are continuous. A
continuous compatibility constraint imparts a rating of how one symbol is compatible with
another. For example, in image understanding, how a pixel is tc be labeled is determined by
the labels of neighboring pixels. The knowledge of how to do neighborhood based labelling is
at best uncertain, hence the constraints that tie pixels together return a certainty rating for
each of the possible labelings of the pixel. The higher the rating, the more probable that the
label is correct. This type of constraint is the chief mechanism of relaxation (Zucker, 1976).
Relaxation can also be viewed as a network constraint system. The goal is to assign a value
to each node. A nodes value is constrained by the compatibility rules on the incident arcs.
CONSTRAINTS (Steele, 1930) can be viewed (loosely) as the dual of relaxation. Behavior
rules are associated with nodes, and values with arcs. When an arc value changes, a node's
ruies determine its effect (i.e., value) on the other incident arcs. The system could recognize
inconsistencies in arc values due to the lack of uncertainty in rule knowledge.

As planning moves from single level to hierarchical, so have relaxation and relaxation-like
processes. Single level relaxaticn often does not have enough information to adequately
label a scene. By creating muitiple levels of representation, higher levels of knowledge could
be incorporated (Zucker, 1977).

The next step was to combine both binary and continuous constraints in a hierarchical
system. Again, image understanding ressarch has been the area for this research (Ballard et
al., 1977; Russcll, 1979). The representation of constraints in image understanding has also
been extended to predicate calculus. Davis (1980) makes the case for predicate calculusas a
better representation for discrete relaxation constraints.,

MOLGEN combined planning with constraint-analysis (Stefik, 1981a). As plans were broken
into sub-problems, variable value constraints determined in one subproblem were propagated
to other subproblems. Hence variables would accumulate constraints across subproblems
betore an actual binding was chosen (a least commitment approach).

Engelman et al. (1980} in interactive frame instantiation associates constraints with groups
of slots. An interesting feature of their approach is that constraints form buckets, each having
its own priority. Hence, constraints have a prigrity ordering.

In getting closer to the scheduling problem, McCalla (1978), in planning driving paths
through a town, considered constraints such as possibie routes, and time and space
restrictions.

One of the few Al scheduling systems was in the domain of train scheduling (Fukumori,
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1980). It used a constraint-based approach to determine the arrival and departuve times of
trains at stations. Trains initially had fuzzy times assigned (i.e., a time span or belt).
Constraints then reduced the size of the belt. The problem was much simpler than the
general scheduling problem in that trains had only one route, and two resources, a track and
stations. The fuzziness of times was similar to that used in Hearsay-ll in dencting the time
span of an hypothesis when its boundaries were uncertain.

A second Al scheduling study was that of Vere (1981). in it plans are constructed, and times
associated with each step in the plan. A sophisticated algorithm for time propagation based
on interactions is described.

Lastly, Buliers et al. (1980) describe a logic-based factory modeling, question-answering
and scheduling system. While the approach is viable for question answering. they ignore the
complexity issue involved in scheduling job shops. The approach suffices for small problems
only.

2.4. Relationship to Previous Research

Our primary concern in this research is the construction of schedules for job-shops in a
rear realtime manner. [f factories with hundreds of orders, machines and tools are to be
scheduled then, scheduling algorithms must be found that find satisfactory solutions quickly,
while considering all the necessary constraints. Our approach is to perform constraint-
directed heuristic search; constraints are used to bound and guide the search (scheduling)
process.

Towards this goal, the most relevant research in the Al literature comes more from general
search and focus of attention research, than in any of the constraint research. The research
describes how to search in multiple levels of representation, and how to smooth the eifects of
terms in a polynomial evaluation function (Berliner, 1980), but does not describe how to
resolve dynamically the set of constraints by which to rate a state.

Much of the constraint research to date is application specific. There does not exist any
general theories of constraint representation, nor approaches to constraint relaxation. The
relaxation of constraints is important. Experience has shown that many constraints conflict,
making the construction of a schedule which satisfies all constraints impossible. Though
NUDGE (Goldstein, 1977) is the only system that expilicitly worries about constraint relaxation,
its approach is domain specific.

The fuzzy times of Hearsay-ll and Fukumori's (1980) train scheduling are an interesting
approach to reducing the representation of alternatives. And the focus of attention (Hayes-
Roth & Lesser, 1976) research restricts where in the search space to attend. But neither solve
the problem of having to bound the solution space in order to make the size of the solution
space feasible to search.
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In conclusion, many theories of search and constraint-based reasoning have been
proposed. But none have been combined to deal jointly with the problem of constraint
representation and relaxation, and the constraint-directed construction of schedules in near
reaitime.
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Chapter 3
ISIS Modeling System

Summary

The ISIS modeling system is the repository of all the knowledge necessary to
plan and schedule production. It should be able to model the concepts of
activities, factory state, orders, etc. in a manner which is machine interpritable.
The system is built using SRL (Fox, 1979; Wright & Fox, 1983), a knowledge
representation system, which allows the user to mold the language to his needs.
SRL is a frame-based language which encodes concepts as schemata. A schema
is a collection of slots and values. Each schema, slot, and/or value may have
meta-information attached to it. In addition to attribute knowledge, slots define
inter-schema relations, through which slots and values may be inherited. The
inheritance semantics of a relation is user definable. SRL has been used to
support a number of different Intelligent Management System functions (Fox,
1981) including simulation (Reddy & Fox, 1983) , diagnosis (Fox Lowenfeld &
Kleinosky, 1583}, graphics. project management, and long range planning (Kosy &
Dhar, 1983).

The ISIS modeling system is a multi-layer system for modeling manufacturing
organizations in SRL. Its layers are: structural, basic semantics, wcrld semantics,
and domain semantics. The basic concepts are that of states, objects, and acts.
Acts transform states and objects. Time and causality are primitive concepts in the
language. Time relations provide time ordering amongst states and acts. Causal
relations define how states enable acts, and acts cause states. A manufacturing
operation is defined as an act. and time and causality relations link it to other
states and acts. Prototypes, instances, and manifestations are used to distinguish
classes, elements and states of objects and acts respectively. SRL's relation
definition mechanism permits the construction of new relations which are
abstractions of these conceptual primitives. Hence, the relation next-operation
is defined in terms of time and causal relations. Operations may also be defined in
multiple levels of abstraction. Resources are defined as objects. Atiributes and
physical structu:e may be defined for an object. Allocation of resources is defined
as a state of possession by some operation or resource with a specified time
relation (e.g., duration). Orders are aiso represented with these primitives. An
order is simply a goal state (e.g., shipped) to be achieved by scheduling the
appropriate operations.

The modeling language has an active interpretation. Its semantics supports the
simulation of parallel, discrete events (acts).

I1SIS MOOELING SYSTEM
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3.1. Introduction

Computers as decision aids are proliferating in today's organization. Organizations are
purchasing more programs a! a ‘faster rate than ever before. With the advent of personal
computers, each user becomes a computer installation with their own databases anc
programs, and has the abiiity to taitor programs and data to suit his needs. Productivity gains
may be significant, but possibly short lived. Given the ability to create software systems in
their own “image”, the form and content of this software will diverge to the point of becoming
a "network of babel”. In the days when computers were expensive, such problems arose less
often. There was a small set of analysts who designed and built programs; the content and
form of information being (somewhat) standardized throughout the dp shop. Returning to the
days of the large dp shop is not the solution. A better approach would be to provide these
mini-installations with a shared language in which to build models. That is, the esperanto of
modeling.

Why would users want to share medels? A model is more than a simple database. It is an
accumulation of expertise: a repository in which both historical information, and the diverse
perspectives of members of the organization, are placed. Hence, it is a tocol with which to
analyze the organization and to instruct new members in its operation. As the distribution of
computing grows within an organization, so will the need to share and integrate the
knowledge generated therein.

The major task in the construction of a sharable modeling language is the choice of
conceptual primitives. Not only must these primitives span the set of concepts germane to the
application (e.g., planning and scheduling), but the language must satisfy other criteria as
well:

Generality: The madel should support a variety of functions in addition to scheduling, such
as: question-answering, simulation, and graphics.

Accessibility: The model should be accessible in two senses. First, it must be easily
perused and altered. Second, it must be perspicuous. That is, the
contents of the mode! must be easily and unambiguously understood by
the user.

Extensibility: Organizations change, and so does the way we think about them. A modeling
system which does not adapt to these changing views will restrict the ways
in which we may analyze it. Ultimately, the level of intelligent behaviour a
system will display may be limited by the model. Hence, the model must
be extendible, incorporating new ways of viewing and describing the
organization.

In this chapter, the ISIS modeling systern is described. The modeling system is composed of
multiple layers, with the core being an Al knowledge representation system called SRL:
Schema Representation Language (Fox, 1979; Wright & Fox, 1983). it provides the structural
primitives in which the domain’s conceptual entitics are defined. With these SAL structures, a

1SIS MODELING SYSTEM
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set of conceptual primitives which is basic to many domains is defined. On top of this,
concepts germaine to scheduling are defined, and these are instantiated as a model for a
particular plant. The key feature of SRL which aliows this layered approach is the user-
definable relations. High level, domain dependent relations may be constructed from low
level, domain independent primitives. The efficacy of this approach will become clear in the
example of this chapter.

Throughout this chapter, an example of an order and a couple of operations required to
produce it will be used to explicate the modeling concepts. In particular, the sequence of a
milling and drilling operation will be described as a method for producing a turbine blade. An
order is a specification of a product to be produced for some customer. It describes
parameters such as due date, cost and quality to be satisfied by the shop. An operation is an
activity in which resources may be transformed, through one or more actions, into new forms
of resources. In deciding which operations to perform and when, the following types of
knowledge are required:

o The range of durations of the operation, including a probability density function.
e The operations which may precede or follow the current operation.

e The resources required: materials, machines, toals, fixtures, software, etc.

o The period of timé during which the above resources are required.

e The transformations applied to the resources. For example, is the cutting fluid on
a milling machine totally consumed?

e Are there any constraints on the usage of the resources?
o Who may perform the operation (i.e., operator).
o Substitutability of resources. if a machine is not available, can another be used?

¢ A description of how the ogerations are performed. What are the compaonents,
i.e., suboperations, comprising the operation.

The purposé of the I1SIS modeling language is to represent much of the information described
above.

3.2. Layer 1: Structure

The ISIS modeling system is based on the knowledge representation system SRL: Schema
Representation Language (Fox, 1979; Wright & Fox, 1983). SRL has its basis in schemata
(Barilett, 1932), which have come to been known as frames (Minsky, 1975), Concepts (Lenat,
1976), and Units (Bobrow & ‘Winograd, 1977; Stefik, 1979).

ISIS MODELING SYSTEM
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3.2.1. Schema Syntax

The basic unit for representing objects, processes, ideas, etc. is the Schema. Physically, a
schema is composed of a schema name (printed in the bold font) and a set of slots (printed in
small caps). A schema is always enclosed by double braces with the schema name appearing
at the top.

{{ operation
NEXT.OPERATION:
PREVIOUS-OPERATION:
MACHINE:

OPERATOR:
DURATION: }}

Figure 3-1: operation Schema

The operation schema (figure 3-1) contains slots defining attributes of the schema such as,
next-operation, duration, and operator.

SRL provides the user with a standard set of relations for defining classes of concepts and
their instantiations. For example, a milling-operation (figure 3-2) can be defined as an
instance of machining-operation, and the machining-operation is a sub-class (i.e., is-a)
of operation:

{{ machining-operation
IS-A: operation  }}

{{ milling-operation
creator. Mark.Fox
{ INSTANCE machining-operation
NEXT-OPERATION: drilling-operation
creation-date: 18-jan-83
MACHINE: excello } })
Figure 3-2: milling-operation Schema

3.2.2. Meta-Information

Meta-information may be attached to any part of a schema. It provides the user with a
means of documenting the information in a schema, and also tor defining the semantics of
schema, slots, and values. In figure 3-2 slots in italics are meta-information attached to the
schema, siot, or value depending on their indentation. In this example, the creator of the
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